Multiresolution Representation of Operators with Boundary Conditions on Simple Domains
نویسندگان
چکیده
We develop a multiresolution representation of a class of integral operators satisfying boundary conditions on simple domains in order to construct fast algorithms for their application. We also elucidate some delicate theoretical issues related to the construction of periodic Green’s functions for Poisson’s equation. By applying the method of images to the non-standard form of the free space operator, we obtain lattice sums that converge absolutely on all scales, except possibly on the coarsest scale. On the coarsest scale the lattice sums may be only conditionally convergent and, thus, allow for some freedom in their definition. We use the limit of square partial sums as a definition of the limit and obtain a systematic, simple approach to the construction (in any dimension) of periodized operators with sparse non-standard forms. We illustrate the results on several examples in dimensions one and three: the Hilbert transform, the projector on divergence free functions, the non-oscillatory Helmholtz Green’s function and the Poisson operator. Remarkably, the limit of square partial sums yields a periodic Poisson Green’s function which is not a convolution. Using a short sum of decaying Gaussians to approximate periodic Green’s functions, we arrive at fast algorithms for their application. We further show that the results obtained for operators with periodic boundary conditions extend to operators with Dirichlet, Neumann, or mixed boundary conditions.
منابع مشابه
The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions
Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...
متن کاملOn the Numerical Solution of One Dimensional Schrodinger Equation with Boundary Conditions Involving Fractional Differential Operators
In this paper we study of collocation method with Radial Basis Function to solve one dimensional time dependent Schrodinger equation in an unbounded domain. To this end, we introduce artificial boundaries and reduce the original problem to an initial boundary value problem in a bounded domain with transparent boundary conditions that involves half order fractional derivative in t. Then in three...
متن کاملInverse spectral problems for Sturm-Liouville operators with transmission conditions
Abstract: This paper deals with the boundary value problem involving the differential equation -y''+q(x)y=lambda y subject to the standard boundary conditions along with the following discontinuity conditions at a point y(a+0)=a1y(a-0), y'(a+0)=a2y'(a-0)+a3y(a-0). We develop the Hochestadt-Lieberman’s result for Sturm-Lio...
متن کاملWavelet Transformation
Wavelet transformation is one of the most practical mathematical transformations in the field of image processing, especially image and signal processing. Depending on the nature of the multiresolution analysis, Wavelet transformation become more accessible and powerful tools. In this paper, we refer to the mathematical foundations of this transformation. Introduction: The...
متن کاملInverse problem for Sturm-Liouville operators with a transmission and parameter dependent boundary conditions
In this manuscript, we consider the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. We prove by defining a new Hilbert space and using spectral data of a kind, the potential function can be uniquely determined by a set of value of eigenfunctions at an interior point and p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011